Common Correlation and Calibrating the Lognormal Forward Rate Model
نویسنده
چکیده
The Lognormal forward rate version of the Libor model is very useful for pricing and hedging exotic OTC products such as auto-caps and in-arrear swaps. However, the model is not easy to calibrate because its parameters include forward rate correlations that are difficult to forecast, particularly at the short end. To gain some idea of how these correlations change, Figure 1 shows the average daily correlations between semi-annual forward rates in the UK during four three month periods between June 2001 and June 2002. It is clear that changes in correlation are not as significant at the long end as they are at the short end. Figure 2 shows the correlation between the semi-annual forward rate starting in six months, and several longer maturity semi-annual forward rates starting in one year, 18 months, 2 years and so forth. Each line in Figure 2 represents the average daily correlation during a quarterly period. The correlations between the six month forward rate and
منابع مشابه
A multicurrency extension of the lognormal interest rate Market Models
The Market Models of the term structure of interest rates, in which forward LIBOR or forward swap rates are modelled to be lognormal under the forward probability measure of the corresponding maturity, are extended to a multicurrency setting. If lognormal dynamics are assumed for forward LIBOR or forward swap rates in two currencies, the forward exchange rate linking the two currencies can only...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملA Two-factor Lognormal Model of the Term Structure and the Valuation of American-Style Options on Bonds
A Two-factor Lognormal Model of the Term Structure and the Valuation of American-Style Options on Bonds We build a no-arbitrage model of the term structure, using two stochastic factors, the shortterm interest rate and the premium of the forward rate over the short-term interest rate. The model extends the lognormal interest rate model of Black and Karasinski (1991) to two factors. It allows fo...
متن کاملSpot, Forward, and Futures Libor Rates
The properties of forward and futures interest-rate contracts associated with a given collection of reset dates are studied within the frameworks of the Gaussian HJM model and the lognormal model of Libor rates. We focus on the dynamics and distributional properties of spot, forward, and futures Libor rates under spot and forward martingale measures.
متن کاملTHE MARKET MODEL OF INTEREST RATE DYNAMICS1 ALAN BRACE Treasury, Citibank, Sydney, Australia
A class of term structure models with volatility of lognormal type is analyzed in the general HJM framework. The corresponding market forward rates do not explode, and are positive and mean reverting. Pricing of caps and floors is consistent with the Black formulas used in the market. Swaptions are priced with closed formulas that reduce (with an extra assumption) to exactly the Black swaption ...
متن کامل